

Large Eddy Simulation Modeling and Experiments of Flashback and Flame Stabilization in Hydrogen-rich Gas Turbines

DE-FE0007107

Venkat Raman (PI) University of Michigan

Noel Clemens (co-l) The University of Texas at Austin

Background

- Focus on syngas based combustion in gas turbines
- Hydrogen in fuel
 - → Increases fuel reactivity
 - Alters the flame location and dynamics compared to natural gas combustors
 - Increased volumetric flow rate
 - Higher reactivity
 - → How does hydrogen change flame dynamics?
- Specific focus on flame flashback in gas turbines

Flashback in Gas Turbines

- Gas turbines operate in premixed combustion mode
 - Fuel and compressed air mixed prior to entering combustion chamber
- Fuel mixing carried out in premixing chamber
- Flashback
 - → Flame in main combustor moves inside premixing chamber
 - Catastrophic consequence since premixer cannot hold high temperature flame
- Hydrogen increases chance of flashback
 - → Higher reactivity causes flame to move back

Boundary Layer Flashback

- Many different flashback modes possible
- Hydrogen-based combustion dominated by boundary layer flashback
- Flow near wall is slower than flame speed
 - → Flame propagates upstream
 - → Only wall quenching arrests flame
- Unique physics affects modeling
 - Turbulent boundary layer affecting flame physics

Project Outline

- Experimental program
 - → Understand flashback physics
 - → Effect of fuel variation on flame propagation
- Large eddy simulation (LES) based modeling
 - → Proven to be accurate for other combustion problems
 - → Understand capabilities for boundary-layer flame interactions
- Interaction with industry
 - → OpenFOAM based model transfer
 - → Experimental design based on inputs from GE and Siemens Inc.

Ancillary Topics of Research

- Over three years, multiple side topics were considered
 - Uncertainty quantification of chemistry models
 - To understand the accuracy of flame speed results
 - → Adjoint-based sensitivity of chemistry models
 - To determine the most critical modeling parameters
 - Simulation of canonical flames and DLR combustor
 - To aid Siemens Inc. in the incorporation of combustion models
 - → Simulation of Georgia Tech. Univ. JICF configuration
 - To aid Siemens Inc. in the testing of basic combustion models

Project Outline

- Experimental program
 - → Understand flashback physics
 - → Effect of fuel variation on flame propagation
- Large eddy simulation (LES) based modeling
 - → Proven to be accurate for other combustion problems
 - → Understand capabilities for boundary-layer flame interactions
- Interaction with industry
 - → OpenFOAM based model transfer
 - → Experimental design based on inputs from GE and Siemens Inc.

UT Swirl Burner

• UT high-pressure swirl combustor

Confined Model Swirl Combustor

- Single axial swirler
- Swirl number: S ≈ 0.9
- Two types of fuel mixing:
 - Fully premixed upstream of plenum
 - Fuel injection through ports in swirler vanes, mixing in mixing tube

Experimental Setup

Experimental Conditions

- Air supply at room temperature and atmospheric pressure
- Flow rates: from 1m/s to 4m/s average axial velocity
- ReD ≈ 2,500 10,000
- Fuel: CH4/H2-mixtures, fully premixed
- Flashback triggering: increase in equivalence ratio

Triggering flashback experimentally

Method 1

- Slow increase in fuel flow rate
- Flashback at critical equivalence ratio

Method 2

- Step change in fuel mass flow
- Flashback at desired equivalence ratio

High-speed Imaging

 Simultaneous 3-component (stereo-)PIV and flame luminescence imaging

Velocity measurements all 3 velocity components in one plane resolution: temporal: 4 kHz spatial: one vector every 0.4mm Flame front detection based on vaporized seeding particles luminescene at kHz rate

Typical Flashback

- High-speed chemiluminescence imaging
- Flashback along center body in swirling motion
- Flame stabilizies on trailing edges of swirler vanes
- Here: CH4-air at Re = 7200

Effect of Reynolds Number

- All images taken at same framing rate
- Flame propagates faster at higher velocity -> structures are not as sharp

Global flashback behavior: CH₄-air flame

- High-speed chemiluminescence imaging (4 kHz)
- False color table applied to luminescence intensity
- Flashback along center body in swirling motion due to thicker boundary layer compared to outer wall
- One main flame tongue leading flashback

Global flashback behavior: H₂/CH₄ air flame (90%)

- Flashback again along center body
- Flame surface more convoluted due to non-unity Lewis number effects
- Upstream flame propagation: combination of large scale flame tongues convected in azimuthal direction with the flow and small scale flame cusps propagating against the undisturbed mean flow direction

Upstream flame propagation: Qualitative

- Mode 1 ("swirl flow flashback")
 - → Flame tongues are convected by the flow in the azimuthal direction as they propagate upstream
 - → Found in both, CH4 and H2 flashback
 - Mode 2 ("channel flow flashback")
 - → Flame cusps convex towards reactants propagate upstream in the direction of the mean undisturbed flow
 - → Found in H2 flashback only
 - → Mechanism appears to be the same as in (non-swirling) channel boundary layer flashback

H₂/CH₄ (90% H₂ by vol.)

t = 43.50 ms 6 u_z [m/s] -45 5 Laser sheet -50 4 tube wa Center bod [uu-55 z 3 Mixing 2 -60 -65 0 -70 -1 5 r [mm] 10 15 0

Field of view for velocity measurements

CH₄-air flame flashback

CH₄-air flame flashback

- Upstream flame propagation always associated with region of negative axial velocity upstream of flame
- Shown here as an example: Re_h ≈ 4,400, φ = 0.8
- Simultaneous luminescence imaging from orthogonal view eliminates ambiguity in interpreting planar data

BL flashback: channel vs. swirling flow

Channel flow

• Swirling flow

Eichler, C., Sattelmayer,
 T., Experiments in Fluids,
 Vol. 52, No. 2, 2011.

streamwise velocity

- Region of negative axial velocity (left)
- However, no
 reverse flow in
 undisturbed mean
 streamwise
 direction (right)

Vorticity field

- Coherent motion of structures highlights the quality of the data
- Layer of negative vorticity along the center body wall as the flame tip enters the field of view

H₂/CH₄-air flame flashback (90% H₂ by vol.)

Effect of Reynolds number

- Flashback of CH4-air flame at Re_h ≈ 9,200 in comparison to Re_h
 ≈ 4,400 case shown before
- Flame surface more wrinkled as expected, but characteristics of upstream flame propagation unaltered
- Suggests that a lot can be learned from lower Reynolds number cases

Large Eddy Simulation of Flashback

- Goal of LES two-fold
 - → Understand current capabilities
 - Develop models in an open source framework for easy transfer to industry
- Flamelet-based modeling
 - → Flow conditions considered fall in the flamelet regime
 - → Progress-variable/enthalpy formulation
- OpenFOAM solvers for combustion
 - → Open source CFD plaftorm
 - → Adapted for LES and turbulent combustion

Large Eddy Simulation of UT Swirl Burner

- OpenFOAM based simulation
 - → Allows transfer to industry without additional legal issues
 - → Integration of models developed in this work
- CAD geometry from experimental group used directly
 - → Critical for transfer to industrial simulations

OpenFOAM for LES

- Base software not suitable for high-fidelity LES
 - → High numerical diffusion
 - → Lack of robust numerical algorithms for low-Mach number flows
- New OpenFOAM module for combustion developed
 - → Incorporates pressure-based low-Mach number solver
 - Robust for high density ratio flows
 - → Improved temporal accuracy
 - → Includes flamelet-type combustion models
 - PDF/quadrature approaches also implemented

Computational Domain

- Unstructured grid
 - → Based on CAD file
 - → Clustered grid

Fuel	CH_4	CH_4	CH_4	CH_4	H_2	H_2	H_2
Bulk velocity (m/s)	1.1	2.2	3.4	4.6	1.1	2.3	3.4
ϕ (stable flame)	0.6	0.6	0.6	0.6	0.15	0.15	0.15
ϕ (flashback)	0.67	0.64	0.77	0.80	0.22	0.20	0.21

Inert Flow Field Validation

Mean velocity components for experimental results (points) and LES results (lines)

- Streaks of high axial and azimuthal velocity forms in the mixing tube
- Flame flashes back in the lowvelocity regime
- Turbulence breakdown affects streak alignment

Swirl Structure

- Mixing tube
 - Swirl structure determined by vane angles
 - → Small differences due to turbulence development
 - Leads to misalignment with experimental data

Flame Description

- Flamelet-based model
 - → Flame described using progress variable
 - → Only valid for constant equivalence-ratio systems
- Flame flashback induced using step-change in equivalence ratio
 - → Implies a change in local fuel/air composition
 - → Requires a mixture-fraction based description
- Mixture-fraction/Progress variable approach
 - → Based on an ensemble of premixed laminar flamelets
 - → Neglects interaction between different flamelets
 - Weak stratification assumption

Achieving Stable Anchored Flame

- Chosen equivalence ratio used to stabilize the flame
- Flame surface initialized as a flat flame at arbitrary height inside chamber
 - Allowed to stabilize and reach statistical stationarity
 - Flame found to travel close to premixing tube
 - → Frequent entry into premixing tube

Numerical Flashback

- Step-change in equivalence ratio at the inlet
 - → Finite time to reach the flame front
 - Shortest time through highvelocity streaks
 - → Imposes a fuel gradient in the flashback region

Flame Behavior in Mixing Tube

- Flame propagation along inner wall
- Flame speed trend with Re consistent with experiments
 - Higher Re leads to higher flashback speeds
- Increased laminarization

→ Partly due to filter width effects

Flashback Physics from Simulations

- Weak reverse flow ahead of flame
 - But larger negative velocity behind flame compared to experiments
- Reverse flow not essential for flashback
 - → Flashback speed is roughly equal to that in experiments
 - Predicted for different fuel compositions and Re

Hydrogen-enhanced Flames

- Higher hydrogen content increases flame wrinkling
 - → Larger density ratios
- Flame front radially distributed compared to experiments
 - Possibly from inaccurate heat loss model
- Reverse flow is still not critical in the simulations
 - Discrepancy noticed in other channel flashback simulations as well

Final Steps

- Direct quantitative comparison of simulations and experiments
 - Preliminary analysis completed; Students working on final set of high-resolution simulations
- High pressure data
 - → Part of second project
 - → Rig built and tested; Initial runs complete
 - → Simulations are being carried out blind for comparisons

Conclusions

- Boundary layer flashback exhibits complex dynamics
 - → Flame propagation mode depends on fuel composition
 - → Strong influence of swirl flow momentum
 - Propagation along weaker boundary layer
 - Inner wall boundary layer in the UT swirler configuration
- Open source LES solver developed and tested for complex reacting flows
 - → Ready to be transferred to industry
 - → Collaboration with Siemens Inc. in progress
- LES predicts trends but not quantitatively accurate
 - → Lack of reverse flow could be tied to low-Mach number assumptions

Outstanding Issues

- What is the role of near-wall flow on flame propagation
 - → Is reversed flow important?
 - → How does anisotropy at the wall affect propagation?
- Effect of pressure
 - Are pressure gradients near wall important for accelerating flame propagation?
- What is LES of flashback?
 - → LES provides an unsteady transient simulation
 - → However, is this directly comparable to experiments?
 - → What does a single realization of experiment and LES mean?